1 List-order DS [I]

List-order is a hybrid abstract data structure combining advatages of linked lists
(quick insertion anywhere) and arrays (we can compare indices quickly).
This is also called order maintenance problem.

Operations:

e INSERTION after a given element in O(1) amortized time,
e PREDECESSOR and SUCCESSOR of an element in O(1) time, and

e finding the ORDERING of two given elements in O(1) time.

We are always given pointers to the queried elements. The space is linear in the
length of the list.

Overview We first construct a list-labeling algorithm that maintains a label on
every element of a linked list, which will need O(logn) amortized time per insertion
. Comparing labels will tell us the order. The labels will be integers with values
bounded by n™"), so we can handle each label in constant time.

Then we use indirection: we create groups of size O (logn) and maintain labels
of the groups . The small size of groups allows us to use labels of exponential
size, so the list-labeling within any group is easy. Combining the information from
both labels gives us the order in O(1) time. Overflowing groups are split in halves,
so the amortized time per insert is also O(1).

1.1 Polynomial list labeling
e We are given a parameter n which is an upper bound on the length of the list.

e We maintain integer labels on the elements such that their order corresponds
to the list order.

e Only insertions are allowed (we are given a pointer where to insert).

The algorithm

e Elements implicitly form hierarchical ranges: labels sharing the first ¢ bits
make a range of level ¢ (ranges are consecutive).

e Choose a € (1,2); for ranges of level i the threshold is a’. We use at most
log,, n bits for labels, as we never get over n = a!°%« ™ elements.

e Insertion: if possible, take any valid label; otherwise find the smallest range
containing the position and relabel it uniformly.

Lemma. Insertion costs O(logn) amortized time.

Proof. When we assign a label, we pay 1 coin to each of the nested ranges containing
the label, that is < log, n. On collisions we find the shortest containing range that
is under its threshold, and we relabel it evenly. When we relabel a range of length
2. it can pay for itself, because:

Case 1. If it’s the first relabeling of the range, then we have 2° coins.

Case 2. Otherwise we show the range has accumulated enough coins since its
last relabel containing it. The number of elements in the overflowing
child clearly went from < [a’/2] to |a*~!] + 1, which means at least
a1 (1 — a/2) — 1 elements were added in the meantime. The number of
relabeled elements is at most o, which gives us at most

a/(1—a/2)=2a/(2—a) € O(1)
elements per coin spent (we disregarded that insignificant —1).

As a consequence, the total number of relabels is bounded by

2a 2«
1 — = (nl —_
(1o, m) 5 = (nlogm) Gt
which is lowest for o = 1.37 and gives us bound < 14nlogn. O

1.2 Labeling with unknown n

We could use the traditional method of rebuilding the whole structure in geometri-
cally increasing intervals, but it’s not necessary:

e only insertions are allowed;

e we start with 1-bit labels;

e whenever the root segment overflows, we relabel all with labels one bit longer
(we would relabel them anyway);

e together the item x; costs us less than 14 (1 + log i) relabelings.

1.3 Indirection

e If we allow labels of b+ log a bits, we can easily process b insertions into a list
with a equidistant labels without any relabeling.

e Choose a,b € © (d) where d is the current label length in the big structure.

2 Persistent data structures

2.1

Definitions

Types of persistence:

partial persistence: linear history (only the last version is modifiable);
undo: linear history, but backtrackable (usually not mentioned in persistence);
full persistence: tree history (any version is modifiable);

confluent persistence: DAG history (allow combining more versions).

We suppose that the versions are identified by opaque identifiers, usually pointers
to a particular version of the structure. Updates create new such identifiers.

2.2

2.3

Applications

Geometric data structures, e.g. planar point location. We are given a set of
lines in the Euclidean plane and every query asks for the list of lines bounding
a particular point. We do a plane sweep with one coordinate represented as
the time (partial persistence), where ordereded dictionary represents the order
of the lines at that time point, and line crossings are done via updates.

Run-time dispatching for subtyped multi-parameter methods. A query asks
for the most specialized method for the given type-tuple of parameters. That
corresponds to finding the first marked ancestor in a partial order (the order
can be represented as the time).

Universal techniques

Note connections to construction of dynamic structures from pieces of static
structures, e.g. Overmars: decomposable searching problems.

One way: purely functional structures — we define the values of memory lo-
cations on their allocation an never change them (typically freed by garbage
collection). For example we can do path-copying on tree-structure updates.
These methods typically pay non-optimal memory per update, which is too
much if we need to keep the history. On the other hand, we get confluent
persistence for free, which has no general efficient techniques.

2.3.1 Full persistence in pointer model [2]

e The original structure is composed of O(1)-sized boxes linked with pointers.

e We construct an efficient persistent version.

Version tree representation

e Versions are represented by opaque pointers into a shared structure (simple
integers would only suffice for partial persistence).

e The tree is linearized. New versions are inserted into the ordering right after
the parent version (so the resulting linear list is some preorder sequence on the
tree).

e We use a shared list-order data structure to maintain all timestamps.

Fat-node method

Idea: let every node remember all its versions.
Overhead of operations performed by the original structure (multiplicative):

e update: O(logn) time and O(1) space

e access: O(logn) time

The method
e Field values for all versions are represented by an ordered map: (field ID, times-
tamp) — value. (We need logarithmic time per operation.)

e A field’s value from the map with timestamp ¢ is valid in the interval between ¢
(inclusive) and the next version for the same field in node’s map (exclusive).

e The only wvalid value of a field in a time ¢ can be found by a simple predecessor
search on the pair (fieldID, t).

e A field update in time ¢ results into two insertions into the map — one storing
the new value with timestamp ¢ and another one undoing the effect for the
version following ¢ in the shared version list (not needed in partial persistence).

Node splitting
Idea: wuse a hybrid between path-copying and fat-node approaches. We need a

constant bound on the in-degrees of nodes.
Overhead of operations performed by the original structure (multiplicative):

e update: O(1) amortized time and space

e access: O(1) time

The method

First we modify the ephemeral structure by adding p inverse pointer slots to
every node (not versioned), where p is an upper bound on node’s in-degree (in-
cluding access pointers). We maintain by these that all links are bidirectional.
Then let k& denote the maximal number of pointers from the node (including
the new inverse pointers).

We add a field for default version to every node, reserve 2e additional slots for
extra fields (e > k, annotated by field IDs and versions) and one copy pointer.

The copy pointers form a singly-linked list, one for every node family. Each
family represents all versions of the node in growing version order.

The valid interval of a node is the interval from its version stamp (inclusive) up
to the version stamp of the successor in its family (exclusive). (It is unbounded
if the node is the last in ist family.)

Pointer properties:

— proper: it’s version is within the valid interval of the target

— overlapping: pointer’s valid interval isn’t contained within the valid in-
terval of the target node (we’ll only consider this property for proper
pointers)

We want all pointers to be proper and non-overlapping after completing any
update. This ensures that following a pointer only takes O(1) time in the
worst case.

On updating any of the fields we use the extra fields to store changes. After
filling up we have to split the node in two. After node splits we first make all
pointers proper (by jumping over copy pointers) and collect the set S of all
nodes containing overlapping pointers. Then we always take a node x € 5,
remove it and:

— Split all overlapping pointers from x, making them proper and non-
overlapping.

— Split x if overflowing, assigning pointers from right to left and always leav-
ing e free extra fields. The only exception is the last=beginning chunk
which can be left larger (just not overflowing) and it occupies the origi-
nal address of x. Note that splitting might’ve made some pointers to x
improper.

— Find all pointers to z and make them proper; add to S all nodes with
newly overlapping pointers. Newly created nodes from z can’t contain
overlapping pointers, so every node can only be added to S at most once
per update.

Analyzing time and space

Note that all nodes still have O(1) size.

e Accessing a field only needs to examine one node, because all pointers are
made proper and non-overlapping, so it is O(1).

The total work is proportional to the number of newly created nodes, because
improper and overlapping pointers can only be created by a split and every
split generates at most p such pointers. Therefore it suffices to show that the
number of newly created nodes is O(1) amortized per a field update done by
the original structure, which also shows the space overhead.

Space: we define the potential of a node

max {e — f,0}

D (v) = P

where f is the number of free extra fields (f is temporarily negative for over-
flowing nodes). The amortized space cost is then the number of new nodes
plus the change in ®.

First, if the original algorithm creates a new node v, it will have ® (v) =0, so
the amortized space complexity isn’t affected.

Let u be the number of fields changed by an update of the original structure.
Apart from splitting, every field update can consume at most 2k extra fields
to the nodes (because of inverse pointers).

Let s be the total number of new nodes created by splitting during the update.
Note that splitting a node can force splitting of up to k pointers (pointers to
the node being split). Every node-split lowers the potential by lowering the
number of extra fields by 2e+1—¢ = e+ 1 (and the new node has e free fields,
so its potential is zero). Therefore the potential change is bounded by

) 2ku ... for field updates
— | +sk ... for pointer splits| =
e—k+1
—s(e+1) ... for node splits
2ku+s(k—e—1) 2ku
= = — 8
e—k+1 e—k+1
The amortized space complexity is < uie_zkk_|r1 which is O(u).

2.3.2 Persistent arrays

Time O(log |history|) or O(loglogn). Construction builds on list-order and
vEBT, but many improvements are needed. The times are asymptotically opti-
mal [3].

The arrays can be easily used to make any RAM data structure fully persistent
with a O(loglogn) slowdown.

References

[1] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and
J. Zito, “Two simplified algorithms for maintaining order in a list,” in
Algorithms — ESA 2002, R. Mohring and R. Raman, Eds. Springer
Berlin Heidelberg, vol. 2461, pp. 152-164, 00000. [Online]. Available:
http://www.springerlink.com/content /gm8mjdthaadc6r2/

[2] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” vol. 38, no. 1, pp. 86-124, 00662. [Online|. Available:
http://www.sciencedirect.com/science/article/pii/0022000089900342

[3] M. Straka, “Optimal worst-case fully persistent arrays.” [Online]. Available:
http: / /fox.ucw.cz/papers/perarray /perarray.pdf

[4] H. Kaplan and R. E. Tarjan, “Purely functional representations of catenable
sorted lists,” in Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, ser. STOC 96. ACM, p. 202-211, 00030. [Online].
Available: http://doi.acm.org/10.1145/237814.237865

[5] H. Kaplan, C. Okasaki, and R. Tarjan, “Simple confluently persistent
catenable lists,” in Algorithm Theory — SWAT’98, ser. Lecture Notes
in Computer Science, S. Arnborg and L. Ivansson, FEds. Springer
Berlin / Heidelberg, vol. 1432, pp. 119-130, 00004. [Online|. Available:
http://www.springerlink.com /content /g1w4422882561038 /abstract /

http://www.springerlink.com/content/gm8mjdfhaa4c6fr2/
http://www.sciencedirect.com/science/article/pii/0022000089900342
http://fox.ucw.cz/papers/perarray/perarray.pdf
http://doi.acm.org/10.1145/237814.237865
http://www.springerlink.com/content/g1w4422882561038/abstract/

2.4 Catenable lists

Operations:

e deque operations PUSH and POP: add/split an element to/from either end;
e CAT: catenate two lists;
e sometimes also SLICE: construct sub-list covering a given range of indices (that
implies reading/changing/inserting/removing elements at a given index).
State of the art:

1. PUSH, POP and CAT in O(1) time and space.

2. pUSH and POP in O(1), cAT in O(loglogn), and SLICE in O(log n)E| This works
by adapting finger search (2, 3)-trees [4].

e Both structures are worst-case and strictly functional: it is enough to define
new nodes and never change them. (No techniques like laziness or memoiza-
tion. Today’s engineers often call it Copy-On-Write or Read-Copy-Update.)

e We show a simplified amortized version of the first structure [5].

2.4.1 Simple lists

First we show some important techniques on a simple version of non-catenable lists.
e The structure of sList(A) is either simply buf: Buffer(A), or a triple
(pb: Buffer(A), cl: sList(AxA), sb: Buffer(A)).
e Each buffer contains between zero and three elements.
e We allow re-writing a node by a different representation of the same sequenceﬂ
e POP (others are very similar) operation is easy without nonempty cl; otherwise:

— If pf is empty, we POP a pair from cl into it, and rewrite the node.
— We return the element from pf and a copy of the node with shortened pf.

Analysis:

e Buffers with zero or three elements are called red, others are green.
e Potential: 3x(#nodes with two red buffers) + (#nodes with one red buffer).

e If we perform k recursive calls, the actual cost is ©(k + 1), but the potential
decreases by k: if a rewritten node had two red buffers, we replace it by two
nodes with one (unchanged) red buffer; if that node only had one red buffer,
we replace it by two nodes with green buffers. The non-recursive tail creates
a new node in arbitrary state, but the amortized cost is still O(1).

1We will denote the lengths of lists by n. More precisely, for car the length of the shorter
catenated list is enough, and indexing is logarithmic in the distance from the nearer end.

2This allows us to use standard amortization techniques which aren’t possible if nodes can’t be
changed. That is the reason why there was so much focus on worst case in confluent persistence.

2.4.2 Catenable deques
e The structure List(A) is either simply buf: Buf(A), or a 5-tuple
(pb: Buf(A), lcl: List(Triple(A)), mb: Buf(A), rcl: List(Triple(A)), sb: Buf(A))
where Triple(A) is a triple (pft: Buf(A), cl: List(Triple(A)), sbt: Buf(A)).
e Buffer lengths in List(A) are 1-8 for buf, 3—6 for pb and sb, 2 for mb. In Triple(A)
the buffers have 2-3 elements, but sb can be empty if cl is empty.

Potential
e Only pb and sb buffers affect the potential; they are red if containing 3 or 6
elements, and green otherwise.

e Potential: 3x(#nodes with two red buffers) + (#nodes with one red buffer).
PUSH(z — 1)

Case 1. List [is a 5-tuple.

o If|I.pb|=6, we split away the last two elements, form a one-buffer Triple
from them, and PUSH it into [.Icl (we overwrote fields {.pb and I.lcl).

e We assemble a copy of node [with x added to [.pb.

Case 2. List [is just single buffer and |l.buf|=8. We overwrite [by a 5-tuple: the
buffers take (3,2,3) elements, respectively, and the child lists are empty.
Then we continue as in Case 1.

Case 3. Otherwise, [is simple and |l.buf|<8, so we can simply extend it.

Analysis is exactly the same as for POP on simple lists — recursion of depth k gets at
least k — O(1) decrease in potential. Thus, amortized complexity of PUSH is O(1).

CAT(ll, lg)

Case 1. Both lists are 5-tuples. We construct a new node [. The last element from
l1.sb and the first from l5.pb will make I.mb; [.pb := [1.pb and l.sb := [5.sb.
Then it only remains to create l.lcl, and [.rcl which is just mirrored. We
split [1.sf into one or two buffers of 2-3 elements, where the first one forms
a triple with (I1.mb,l;.Icl,*) and the second one can be triple by itself. We
PUSH these 1-2 triples to the right end of /;.lcl and thus obtain our .Icl.

Case 2. Either list is a simple buffer. We PUSH the elements of the smaller list
into the larger list, one by one.

Analysis: the operation by itself just allocates one new node, performs constant
work, and then it calls PUSH at most four times. Thus, CAT is O(1) amortized, too.

NAIVEPoOP()

We simply assemble a copy of node [without the first element in {.pb. This may
create an invalid node, but we can afford that if it’s just a temporary node and we
want to PUSH something back on that place immediately.

popP(l) x

References

[1] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and
J. Zito, “Two simplified algorithms for maintaining order in a list,” in
Algorithms — ESA 2002, R. Mohring and R. Raman, Eds. Springer
Berlin Heidelberg, vol. 2461, pp. 152-164, 00000. [Online]. Available:
http://www.springerlink.com/content /gm8mjdthaadc6r2/

[2] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” vol. 38, no. 1, pp. 86-124, 00662. [Online|. Available:
http://www.sciencedirect.com/science/article/pii/0022000089900342

[3] M. Straka, “Optimal worst-case fully persistent arrays.” [Online]. Available:
http: / /fox.ucw.cz/papers/perarray /perarray.pdf

[4] H. Kaplan and R. E. Tarjan, “Purely functional representations of catenable
sorted lists,” in Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, ser. STOC 96. ACM, p. 202-211, 00030. [Online].
Available: http://doi.acm.org/10.1145/237814.237865

[5] H. Kaplan, C. Okasaki, and R. Tarjan, “Simple confluently persistent
catenable lists,” in Algorithm Theory — SWAT’98, ser. Lecture Notes
in Computer Science, S. Arnborg and L. Ivansson, FEds. Springer
Berlin / Heidelberg, vol. 1432, pp. 119-130, 00004. [Online|. Available:
http://www.springerlink.com /content /g1w4422882561038 /abstract /

10

http://www.springerlink.com/content/gm8mjdfhaa4c6fr2/
http://www.sciencedirect.com/science/article/pii/0022000089900342
http://fox.ucw.cz/papers/perarray/perarray.pdf
http://doi.acm.org/10.1145/237814.237865
http://www.springerlink.com/content/g1w4422882561038/abstract/

	List-order DS mohringtwo????
	Polynomial list labeling
	Labeling with unknown n
	Indirection

	Persistent data structures
	Definitions
	Applications
	Universal techniques
	Full persistence in pointer model driscollmaking1989
	Persistent arrays

	Catenable lists
	Simple lists
	Catenable deques

