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1 Introduction

In the past years the computers have been increasing their processing power and
storage capacity very rapidly. As the process is expected to continue in the future,
it might seem that e�cient algorithms and data structures become less important.
However, the more one has, the more he wants. The demand to process huge
amounts of data grows at least as fast as the speed of hardware. In the days
of �rst computers the size of processable data was quite small. Therefore, most
of the work on making the programs perform faster was done on the low level,
by tweaking the code to improve multiplicative constants. As the size of data
grows, these constants become less important and they are slowly overcome by
asymptotic behaviour of the algorithms used. As a consequence, the optimization
work in high-performance computing change from low-level tweaking to high-level
design changes, utilizing more advanced data structures and algorithms.
In this thesis we focus on one simple data-structure problem that has been

studied for a long time and also frequently appears as a sub-problem in various
algorithms. Contrary to the classical textbook theory we use a di�erent computa-
tion model that is becoming popular in recent publications. We chose it because
it more closely matches the abilities of real hardware that is available today and
in the foreseeable future.
The layout of this text is as follows. We start in the next chapter by formulating

our central problem. We also describe the computation model, the applicability
on related problems and we discuss the state of the art in the worst-case solution
of our problem. Then in chapter 3 we survey notable advances in the history of
expected-time solutions. Starting with a well-known array search algorithm, we
follow the development up to the most recent dynamic data structures. In chap-
ter 4 we concentrate on a known structure that uses a clever decomposition. We
present a detailed design of its randomized variant with reduced space require-
ments and we analyse its properties. Then in chapter 5 we utilize the structure's
principles and adapt it to the input models known from expected-time solutions.
As a result we obtain a new structure with performance comparable to the state
of the art from chapter 3. Finally, we sum up our thesis in chapter 6.
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2 The basics

2.1 Models

The predecessor problem

Through the whole thesis we will work with data structures for the predecessor
problem. It appears in many equivalent variations under di�erent names, such as
successor problem, dynamic ordered set problem or ordered dictionary. To avoid
confusion, we de�ne the problem as follows.

De�nition 1. Data structure solving the predecessor problem maintains a
dynamic subset of an ordered universe set. It implements the following operations:

• Member(x) tests if the value x belongs into the represented set

• FindMin() and FindMax() search for a bounding value of the set

• Insert(x) and Delete(x) modify the represented set by including or excluding
one element

• Predecessor(x) �nds the greatest contained element that is less than x

• Successor(x) �nds the least contained element that is greater than x

Note that the argument of Predecessor or Successor doesn't have to be contained in
the set. Sometimes we consider a static version of the problem, where the structure
is constructed in advance and the modifying operations Insert and Delete are not
allowed.

Computational model

In the classical model where only comparison operations are allowed on stored
elements, the predecessor problem is already solved optimally (in the sense of
asymptotic time and space). The O(log n) time bound on the operations can
be achieved easily by balanced trees. If we were able to perform the operations
quicker, we could easily break the Ω(n log n) lower bound on comparison-based
sorting by �rst building the structure from all elements by Inserts and then re-
moving them in order by FindMin and Delete operations.
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However, the comparison model isn't realistic, because all ordinary computer
architectures can perform much wider range of operations. That is why we use
another popular model, the word-RAM [14].
RAM is a family of models that work only with integers. The memory looks like

an array of integers and can be indexed (the integers may be used as pointers).
The original model was too strong and there are several used ways of restricting
it to reasonable strength.
The word-RAM modi�cation restricts the size of the integers processable in

unit time and calls them words. We will use w to denote the maximum bit-length
of words. Since in this model we are only able to address space of 2w words, we
suppose in addition that for an input of length n we have words of size w ≥ log n.1

Otherwise we wouldn't even be able to read the whole input.
All operations of word-RAM work in constant time and on a constant number

of words. The available types of arithmetic operations consist of those that are
available in standard programming languages, such as C. Sometimes, however, ar-
bitrary operations that belong to the AC0 complexity class are allowed instead.2

Such model is often called AC0-RAM. Although this restriction may seem theo-
retical, AC0 operations are performed much quicker on most modern processors.
That is caused by the fact that the AC0 class by de�nition consist of problems
with e�cient digital circuits.
The most useful advantage over the comparison model is that RAM allows us

to compute values from input and use the results as addresses. Similar tricks are
widely used (even in practice) and they are known for a very long time. Among
the �rst notable occurrences are hashing and radix sort.

Restriction to integers

When solving the predecessor problem, we will only consider the situation when
we store a set of nonnegative integers that �t into one word. We will show that
this restriction isn't as bad as it may appear, because any solution of this basic
case can be extended to solve the same problem on some other kinds of keys.
Adding support for negative integers can be done, for example, by increasing

the value of every key by a certain amount so all of them are nonnegative. Such
transformation is very simple, invertible and preserves ordering completely.
The most common models for non-integers used today are �oating-point num-

bers de�ned by the IEEE-754 standard. They can represent a subset of rational
numbers in form p 2q for integers p and q. The standard ensures that the ordering
of two nonnegative �oating-point numbers is the same as lexicographical ordering
of their bit representations, assuming the numbers use the same kind of format [12,
section 2.1]. That means we can interpret the keys as integers without disturbing
comparison results. If we needed both negative and positive �oats, we could store

1We will use � log� to denote a base-2 logarithm.
2Common non-AC0 operations are multiplication, division and modulus.
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their absolute values separately in two structures and simulate operations on their
composition by a few operations on the two substructures.
Andersson and Thorup [2] showed how to generalize an arbitrary structure for

the predecessor problem to work with strings. In such structures the keys can
span multiple words and they are ordered lexicographically.
When designing set data structures, we usually only consider the values of

keys. In practice, however, we often need to associate some other data with every
stored element. This simpli�cation is due to the fact that most data structures
can be easily generalized to handle such cases. In cases where it isn't possible,
the additional data can be stored outside, in a dictionary structure containing the
same set of keys. We will use this technique later and describe it in more depth
in section 4.1. As an alternative on RAM models, it is possible to simply append
a pointer to every stored key. All keys become longer by w bits (the length of
the machine word), which usually doesn't impact asymptotic bounds on time or
space. Obviously, the order of the keys isn't a�ected, but the Member operation
gets more complicated because it needs to be simulated by a call to Successor.

2.2 Worst-case bounds

The asymptotic worst-case complexity of the predecessor problem on word-RAM
is already understood quite well. Beame and Fich [5, 4] proved lower bounds on
the static version of the problem. They used the cell-probe model which is strictly
stronger than word-RAM (it only counts memory accesses into the complexity),
but we will formulate equivalents of their results on the word-RAM model.
Consider a static structure storing arbitrary n elements from the universe set U

of size N on a word-RAM with w-bit words. We assume that the structure needs
nO(1) words of space. Then it holds:

• If w ∈ (logN)O(1), then the predecessor queries need Ω
(√

logn
log logn

)
time in

the worst case [4, Corollary 3.10].

• If w ∈ 2(logN)1−Ω(1)
, then the predecessor queries need Ω

(
log logN

log log logN

)
time in

the worst case [4, Corollary 3.9].

Note that if we allowed too big words, we could e�ciently store the set as a bit
map � we would achieve constant time per query for w ∈ Ω(2logN) = Ω(N).
Similarly, if we allowed to use too big number of words, we could precompute the
answers for all possible queries.
Beame and Fich also proposed a static structure that achieves the asymptotic

bounds [4, Theorem 4.5]. It answers the predecessor queries in worst-case time

O
(

min
{ √

logn
log logn

, log logN
log log logN

})
and it can be constructed in time and space

O(n2+ε) for an arbitrary ε > 0.
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Moreover they showed that the structure can be dynamized by Andersson's
exponential trees. The trees were �rst designed for converting a static structure
for the predecessor problem into an amortized structure, but later Andersson and
Thorup proposed a modi�ed version that achieves identical worst-case time bounds
(complete descriptions can be found in [3]).
The structure created as a combination of the static structure from Beame and

Fich with the worst-case version of Andersson's exponential trees needs Θ(n) space
and performs all operations of the (dynamic) predecessor problem in time

O

min


√

logn
log logn

log log n · log logN
log log logN

log log n+ logn
logw


 in the worst case [3, Corollary 1.4].

Here the �rst upper bound in the minimum is optimal, because even for the static
problem with polynomial construction the queries can't be answered faster in the
worst case. The second bound is not likely to be tight and it should also be
compared to the O(log logN) time of van Emde Boas trees. However, the VEBT
implementations either use enormous space of O(N) or need hashing which makes
the time bounds expected instead of worst-case (VEBT structures are discussed
in chapter 4). The third bound comes from an Andersson's modi�cation of fusion
tree structure (for more details see [3, section 4.1]).
The worst-case time bound of Θ

(√
log n/ log log n

)
on the predecessor problem

is settled. However, it can still be outperformed if we know more information
about the input and we minimize the expected time instead of the worst-case
time. Studying such techniques is the main point of our work.

9



3 Interpolation search methods

3.1 Searching sorted arrays

The �rst attempts to utilize restricted input distributions concentrated on e�ec-
tive searching in sorted arrays. That corresponds to the static version of our
predecessor problem. Sorted arrays can be trivially searched by binary search,
but that only results in Θ(log n) time.
Interpolation search was designed for arrays containing numbers uniformly dis-

tributed over an interval. The algorithm was �rst proposed by Peterson [25]. It
also works on every distribution known in advance, provided that the cumulative
distribution function is continuous and easily computable. During search the al-
gorithm maintains such a segment of the array that the searched value belongs
between the bounds of the segment. In every iteration the segment is split on a
guessed position and the algorithm continues with the correct one of the two.
Let A denote the searched ordered array containing values chosen independently

according to a continuous cumulative distribution function F . When searching for
a value x in a segment with indices Al . . . Ah, the algorithm probes the index

i =

⌈
F (x)− F (Al)

F (Ah)− F (Al)
(h− l − 1)

⌉
+ l

(there are several versions of the algorithm that di�er in the way of rounding the
indices).
It was later proved in several ways that the expected number of probes in

interpolation search is log log n + Θ(1) [32, 23, 13] and that this is also the lower
bound on the expected time of any algorithm choosing the probed indices [32].
This is an exponential speedup compared to the classical method of binary search.
However, the worst-case number of probes is Θ(n).
Perl and Reingold [24] proposed a modi�ed algorithm that interleaves the in-

terpolation steps with unary and binary steps. Contrary to the original algorithm
it guarantees an O(log n) worst-case bound and it is much simpler to show that
the expected number of probes is O(log log n).
Willard [29] noted that the interpolation search chooses probed indices anal-

ogously to the regula falsi method of �nding roots in numerical analysis. He
used ideas from improved versions of regula falsi to construct a new algorithm for
choosing the probed index and he showed that the expected number of probes
is O(log log n) even when the data are generated according to an arbitrary (un-
known) distribution from a class of �regular� distributions.

10



The constant factors hidden in Willard's method are much bigger than in
the original interpolation search. This issue was addressed by Carlsson and
Mattsson [6] by combining interpolation steps with �extrapolation steps�. They
proved that the new algorithm does at most four probes more than interpola-
tion search (on average) when used on uniformly distributed data. Carlsson and
Mattsson also proposed a method of selecting the starting interval of the search
based on the knowledge of an estimate of the input distribution. They use precom-
puted least-squares line approximation of the input's cumulative distribution func-
tion. Combination of these two improvements was compared experimentally to
the original interpolation search on several distributions (uniform, normal and ex-
ponential). On nonuniform distributions the original interpolation search method
degraded quickly, performing much worse than a simple binary search, and the
proposed combination only needed a low number of probes on average. It was a
little quicker even on the uniform distribution. However, no bounds for behaviour
on unknown distributions were proved.

3.2 A dynamic model

The interpolation search algorithm is very quick and simple, but it su�ers from
two big problems. One of them is the bad behaviour on unknown nonuniform
distributions which was already discussed above [29, 6]. The other issue is that
interpolation search only solves the static version of predecessor problem.
We are going to describe several publications that discuss solution of the dy-

namic predecessor problem. The latest ones don't have much in common with the
original method, but they are still usually called dynamic interpolation search.
The expected complexity analysis of fully dynamic data structures brings new
complications. We use the model of µ-random insertions and random deletions,
because it is customary in the publications that we work with.

De�nition 2. µ-random insertions take values according to a density µ that
doesn't change during the whole life of the structure. Random deletions remove
uniformly from the set of contained elements. All the modifying operations are
arbitrarily intermixed and independent.

This model is convenient because it preserves �randomness� of the stored set �
at any point of execution the set appears to be created by independent insertions
only. That is usually essential for complexity analyses of the structures we will
discuss. A more thorough study on various random deletion models was published
by Knuth [18].
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3.3 Interpolation search tree

The �rst structure using this randomized model to achieve reasonable search times
is interpolation search tree (IST) by Mehlhorn and Tsakalidis [20].1 There was
some previous work that could be counted into the same category, but it doesn't
achieve such a good asymptotic performance and we don't use their results or
ideas [15, 11].
IST structure was designed to work with a class of �smooth� distributions, which

is a superset of Willard's �regular� class. The smooth class was later generalized
by Andersson and Mattsson [1] and we will use their notation for IST as well. The
class of distributions used in IST corresponds by the following de�nition to the
(sα,
√
s)-smooth distributions (for an arbitrary constant α < 1).

De�nition 3. Let µ be the density of a probability distribution over an inter-
val 〈a, b〉. Given two functions f1 and f2, µ is (f1, f2)-smooth i�

∃β ∀c1, c2, c3 a ≤ c1 < c2 < c3 ≤ b ∀s ∈ N

Pr

[
X ∈

〈
c2 −

c3 − c1
f1(s)

, c2

〉 ∣∣∣∣ X ∈ 〈c1, c3〉] ≤ βf2(s)

s

There is quite a simple intuition behind this complicated condition. It implies
that if we cut some interval 〈c1, c3〉 into f1(s) subintervals and µ-generate s values
from 〈c1, c3〉, every subinterval is expected to get O(f2(s)) elements.

The static case

We will �rst focus on building an ideal IST and discuss adding the modifying
operations later. For the sake of simplicity we will omit all rounding of IST's
parameters, because the it doesn't a�ect asymptotic properties of the structure.

De�nition 4. Let A = {x1 < x2 < · · · < xn} ⊆ 〈a, b〉 be the set to be stored and
let k =

√
n. The ideal IST for A on 〈a, b〉 and a parameter α < 1 consist of:

• An array rep[1 . . . k] of representatives from A. The sample is chosen to be
equally spaced. That is, it contains

{
x√n , x2√n , x3√n , . . . , xk√n

}
.

• An array tree[0 . . . k] that contains the ideal IST structures for subsets
A0, A1, . . . , Ak created by partitioning A with the elements of rep. The
representatives are not stored recursively and they act as new boundaries of
the subtrees (their a and b parameters). The parameter α remains the same
in all subtrees.

1The IST structure is a bit tricky, because it was published in two di�erent versions. The
�rst one was presented in 1985 on ICALP and LNCS, but it had some pages in wrong order
and some missing. Here we rather refer to the other version from ACM 93 journal. There
some proofs were modi�ed, some added and the �nal parts were completely changed. Also,
the de�nition of �simple IST� was dropped and the new de�nition of IST corresponds to the
original �augmented IST�.
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• An array id[1 . . .m], m = nα, containing indices to rep satisfying

id[i] = j ←→ rep[j] < a+ i
b− a
m

≤ rep[j + 1] .

The id array can be viewed as an approximation of the quantile function (the
inverse to the distribution function). When searching for x in IST (not necessarily
ideal), we at �rst use id to estimate the position of x in rep according to the
de�nition of id. This way we directly obtain an upper and lower bound on the
index in rep where x can occur (the values in rep are in ascending order). Then,
using binary search, we either �nd the exact position of x in rep or we �nd the
index of the subtree in which x belongs and we search it recursively. Searching
for predecessors and successor works the same, because one can easily traverse the
contained elements in order.

Dynamization

The ideal IST can only store a static set, so the modifying operations are de�ned
as follows (leading to a non-ideal IST). Inserting is simply done into the leaf that
would be found when searching for the inserted value � a new one-valued IST is
inserted into the right empty place. When deleting, the value is found and it is
only marked to be deleted. The id and rep arrays are never changed on insertions
or deletions, but it is necessary to periodically rebuild individual subtrees.
A counter is added into every node of the structure to store the number of

modifying operations since the last rebuild. When the counter exceeds n0/4 (where
n0 is the number of elements stored by the subtree during the last rebuild), the
whole subtree of the node is completely rebuilt. All unmarked contained elements
are extracted and a new ideal IST is built as de�ned above. The rebuild can be
obviously done in time Θ(n0), so the needed time can be amortized into additional
constant time per modifying operation.

Asymptotic complexity

Now we brie�y discuss the asymptotic complexities proved by Mehlhorn and
Tsakalidis. More details on IST and proofs can be found in [20]. The expected
bounds will hold when the modi�cation queries are µ-random insertions and ran-
dom deletions where µ is a (sα,

√
s)-smooth distribution. That is, the averaging

is done over the distribution of the input and the structure uses no random bits.
We will use n to denote the current number of elements in IST.
When the parameter α < 1, the space complexity is Θ(n), otherwise it would

be superlinear.2 The ideal IST has child trees for subsets of size Θ(
√
n), so its

depth is Θ(log log n). The modifying operations can increase the depth, but it

2In our work we will usually only consider structures with linear worst-case space complexity.
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is bounded by O(log n) in the worst case. The expected depth of an arbitrary
element in IST is still Θ(log log n) in the chosen model of input.
When operating on IST, the binary search in the rep array clearly needs
O(log n) time in the worst case. Since the worst-case depth is O(log n), the worst-
case search time is bounded by O(log2 n). However, the expected case is better.
We use binary search on a range of rep given by the id array. The length of this
range is only constant on average thanks to choosing the length of id according
to the smoothness of µ.
To sum up, the time complexities of IST on predecessor-problem operations are:

• searching =

{
O(log2 n) worst-case
O(log log n) expected

• modi�cation = searching +


O(n) worst-case
O(log n) amortized
O(log log n) expected amortized

3.4 Augmented sampled forest

Andersson and Mattsson improved the interpolation search tree structure in sev-
eral ways [1]. We are only going to brie�y cover the di�erences of their augmented
sampled forest (ASF) against IST.

Improved rebuilding

The �rst change is simpli�cation of the rebuilding scheme. In IST is every subtree
of size n0 completely rebuilt after Θ(n0) modi�cations. In ASF this is only done
with the whole tree which is static between the rebuilds. That means we need to
have some simple dynamic substructures in the leaves (balanced trees were chosen
for ASF). After a rebuild, every leaf substructure contains exactly one element,
but it can grow or shrink until the next rebuild.
Since the layout of the tree is only determined by static parameters and n0

(the number of contained elements during the last rebuild), the whole tree can be
made implicit and allocated in one huge memory region. That is an advantage
for practical implementation, because it helps to decrease constant factors of time
and space complexities.
Andersson and Mattsson also proposed to use the technique of global rebuild-

ing [22] to spread the tree rebuild into Θ(1) extra work done on every insertion
or deletion. In this way it is possible to cut down the worst-case asymptotic time
bounds to the values of amortized bounds.
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Generalization of input distribution

The IST was tailored for the class of (sα,
√
s)-smooth distributions (which were

called just �smooth� by Mehlhorn and Tsakalidis). Andersson and Mattsson no-
ticed that the class can be generalized and they extended the parametrization of
the structure. The ASF containing n leaves is characterized by three nondecreas-
ing functions H(n), R(n) and I(n). They determine the height, the degree of the
root node and the length of the id array in the root.
The parametrization functions aren't independent. If we want to achieve height

H(n), we have to choose R(n) = n /H−1(H(n) − 1).3 I(n) should be as large
as possible to allow fast searching on a wider class of distributions. The only
restriction is that the total consumed space for id arrays is O(n).
Andersson and Mattsson proved that total linear space can be guaranteed by

choosing I(n) = n · g(H(n)) for any function g that satis�es
∑∞

i=1 g(i) = Θ(1).
Then we get an ASF that supports searches and updates in Θ(H(n)) expected
time when the input distribution is ( s · g(H(s)), H−1(H(s) − 1) )-smooth [1,
Theorem 6].
For comparison with the IST structure they chose H(n) = Θ(log log n) and

g(x) = 1/x1+ε for an arbitrary ε > 0. Then the Θ(log log n) expected time of ASF
holds on the class of

(
s/(log log s)1+ε, s1−δ

)
-smooth distributions for any δ > 0.

This class is a superset of the (sα,
√
s)-smooth class of distributions with α < 1,

which was used in IST.

Constant time for bounded densities

A special case was pointed out by Andersson and Mattsson when choosing depth

H(n) =

{
0 for n = 1

1 for n > 1

Then the ASF collapses to one level of n buckets dividing the space into identical
intervals represented by balanced trees. This way we get expected Θ(1) time for
any bounded distribution (the (s, 1)-smooth class).
In particular, this is a convenient representation for uniformly distributed sets

because it is very simple and all the operations are even quicker than on a sorted
array with interpolation search.

3.5 Recent improvements

The most recent published improvements of dynamic interpolation search were
discovered by Kaporis et al. [16]. They noticed that the rep array in ASF is not

3That is a simple observation � the denominator is the number of elements contained in every
child of the root node.
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needed to achieve quick search times and the id array itself can store pointers
to the subtrees. This way the tree doesn't divide the stored set into parts with
roughly equal sizes, but it rather partitions the universe set. To reduce the depth,
small subsets are represented di�erently. Kaporis et al. chose the q*-heap structure
for sets of polylogarithmic size, which makes the leaf structures work in Θ(1)
worst-case time.
The q*-heap structure [30] is a heavy-weight word-RAM data structure that uses

precomputed tables of size o(N) when operating on a universe set of size N . It can
perform all operations of the predecessor problem in time O(1 + log n/ log logN)
in the worst case [30, Corollary 2] and it only needs O(n) words of memory (not
counting the table). As a consequence, sets of size n ∈ (logN)O(1) can be handled
in constant time. The needed tables can be precomputed in time O(N ε) for an
arbitrary ε > 0 and they can be shared by all instances of the structure. However,
Kaporis et al. do not mention this precomputation requirement and they also don't
seem to account the needed time because their stated time bounds are independent
of N [16, Theorem 2].

Behaviour on various distributions

Now we summarise the complexities claimed by Kaporis et al. The Θ(log log n)
expected time bound is achieved on the same class of distributions as the ASF
structure. Similarly to ASF, the new structure has also constant depth with high
probability on bounded distributions and moreover also on (s, logO(1) s)-smooth
distributions. This di�erence is caused by the fact that the newer structure uses
much stronger leaf substructures.
Kaporis et al. also sketched how to use the new structure to store elements taken

from power law or binomial distributions. They cut the interval that is too dense
to satisfy the smoothness condition and represent it separately in van Emde Boas
tree structure [27, 28]. The remaining one or two intervals are then represented
in the usual way.

Worst-case space usage

It is stated in [16, Theorem 2] that �the space usage of the data structure is O(n)�.
However, from the description of structure's layout it follows that it only holds
with high probability, not in the worst case.4

A simple problematic input consists of n consecutive values such that they don't
�t into one leaf. Obviously, the structure will shape itself into a linear chain of
nodes with several leaves at the end. Every non-leaf node takes Θ(f1(n)) space
and the length of the chain does not depend on n but on the size of the universe

4The description only considers ideal trees where no node of the tree has a child with its subtree
bigger than half of its parent's subtree.
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set. That can be arbitrarily large compared to n and thus the worst-case space
usage is not bounded in terms of n.
The situation can be easily improved, for example, by a di�erent representation

of such chains of nodes. That would ensure the nodes form at least binary tree
and the depth is O(n/fL(n)), but the space usage would still not be O(n).

Summing up

The work of Kaporis et al. shows several interesting ideas. For example, the par-
titioning of the universe set doesn't depend on the stored values, so the expected-
time analysis is simpler. Moreover, the worst-case search time is kept on the
optimal bound of Θ

(√
log n/ log log n

)
by a combination with the optimal worst-

case structure discussed on page 8.
On the other hand, there are many unclear properties of the structure. Some

of them were already mentioned. Also, no e�cient algorithm is given for the
Predecessor and Successor operations. Kaporis et al. state that proofs and some
more details about the structure are omitted and they are available in the full
version [17]. Unfortunately, we weren't able to obtain the full version to resolve
the issues.

3.6 A di�erent approach

We �nish the survey of methods based on interpolation search by a brief mention
of a di�erent approach from Demaine et al. [9]. We will not use their ideas or
results, but we list them to complete the collection of related research.
Instead of using the randomized model (de�ned on page 11) with restricted

distribution classes, they introduce a new deterministic metric of �well-behaved
data� � for x1 < x2 < · · · < xn they de�ne the maximum gap ratio ∆ =
max{xi−xi−1}/min{xi−xi−1}.
Demaine et al. propose a simple static structure that divides the interval 〈x1, xn〉

into n buckets of the same length where the elements of every bucket are stored in
a balanced search tree. Every bucket stores all elements that naturally belong into
it (by their value) and in addition it contains the nearest stored neighbour above
and below (if they exist). This layout is very similar to the structure from Kaporis
et al. when used on bounded distributions (the work of Kaporis et al. was published
later). It is obvious that the proposed structure uses Θ(n) space and can be built
in Θ(n) time in the worst case (from an ordered list). They also show a simple
proof that the structure only needs O(log ∆) worst-case time for searching. The
predecessor or successor can be easily found directly in the corresponding bucket
because of the choice that buckets additionally store their nearest neighbours.
To obtain some comparison with the previously known structures, Demaine

et al. also prove that for uniformly distributed independent data the gap ratio is
polylogarithmic in n with high probability, that is, ∆ ∈ (log n)O(1) w.h.p. As a
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consequence, the static structure needs expected time O(log ∆) ⊆ O(log log n),
but both the ASF structure and the structure of Kaporis et al. perform better on
these conditions. They only need expected constant time, because the uniform
distribution belongs into the (s, 1)-smooth class.
Moreover, Demaine et al. show how to obtain a dynamic version of the structure

that needs O(log ∆max) time per operation where ∆max denotes the highest value
of ∆ over the whole life of the structure. The original bound of the structure
is amortized, but it is claimed that the rebuilds can be spread out to achieve a
worst-case bound.
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4 van Emde Boas trees

There is a data structure designed by van Emde Boas [26, 27, 28] that solves
the predecessor problem on a universe set of �xed size N . It can perform all
the operations in time Θ(log logN) in the worst case. Therefore, if the stored
set covers relatively big fraction of the universe set, this structure is very fast.
However, if the universe is more than exponentially larger, n ∈ o(logN), the
structure is asymptotically slower even than the trivial solution by balanced trees.
The greatest disadvantage of the structure is its space consumption which is

only bounded by O(N). That can be very large in terms of n (the size of the
stored set), so the usability is limited compared to structures with the usual O(n)
space bound. In this chapter we describe a modi�cation of the van Emde Boas
structure that uses hashing to achieve the O(n) optimal bound. However, the
operation time bounds can no longer be worst-case. An almost identical structure
was proposed by Mehlhorn and Näher [19], which we discovered after modifying
the VEBT design.
In the following section 4.1 we discuss the needed hashing techniques. Then the

construction itself is split into two steps corresponding to the sections 4.2 and 4.3.

4.1 Dynamic dictionaries

The de�ned structure makes use of dynamic dictionaries, which solve much simpler
problem than the predecessor problem. We will often shorten the name just to
�dictionary�. We �rst de�ne their semantics of operation and then brie�y discuss
the possibilities of implementation and asymptotic complexities.

De�nition 5. Dynamic dictionary is any data structure that stores a dynamic
set of keys where every key is associated with a value. It provides the following
three operations:

• Find(x) searches for key x in the stored set and returns either the associated
value or a special value null if the key is not contained.

• Insert(x, y) inserts the key x associated with the value y. It can be used only
when x is not contained in the stored set.

• Delete(x) removes the key x from the stored set (together with the associated
value). It can be used only when x is represented in the set.
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Since here we work with the word-RAM model, the universe set for key values
is always in the form of U = {0, . . . , N − 1} for some N ∈ N. We only consider
N < 2w, so the keys �t into one machine-word and thus the arithmetic operations
with keys take constant time (it can be easily extended for keys �tting into a
constant number of words without a�ecting asymptotic complexities).

A trivial example of a dictionary implementation is directly addressed array,
which is used in the original VEBT structure. That causes a huge waste of space
in the typical case when the dictionary only stores a very small fraction of the
universe set.
We want to use an implementation that only uses Θ(n) words of memory when

storing n keys and needs expected amortized constant time on any operation.
That is typically achieved by hashing techniques. The conditions are satis�ed, for
example, by dynamic perfect hashing [10], which in addition ensures constant-time
Find in the worst case.
However, we don't really need such a complicated dictionary. A simple dynamic

hashing scheme with separate chaining is su�cient. For example, we can maintain
the sizem of the hash table such that n ∈

(
m
2
, 2m

)
and we resize (rehash) the table

to m = n whenever n gets out of the interval. In such setting the rehashing into
a table of size m = n occurs after at least m

2
modifying operations since the last

rehashing. Moreover, the invariant on the table size ensures that we always have
m ∈ Θ(n), so m

2
∈ Ω(n + m). During the rebuild, a new hash function is chosen

for the new table size m, then the whole old table is read and all elements are
moved into the new table. That takes time Θ(n+m), because the old table size is
at most 2m. Consequently, this rebuilding time can be amortized into additional
constant time for the Ω(n+m) modifying operations since the last rebuild.
For the hash table we need to use a hash function that distributes the universe

set uniformly in the table. We also require that it is randomly chosen from a
universal family of functions to avoid the existence of �bad inputs�. We won't
explain here the theory of universal hashing, because it is widely known and it
can be found in most textbooks about data structures, for example in Introduction
to Algorithms [7, in section 11.3]. The universal hashing ensures that if excluding
the table rebuilding, the expected time needed for any operation is O

(
1 + n

m

)
,

which is O(1) in our setting. Moreover, the required time is independent of the
input � the time is expected constant for any input, computing the expectation
only over the random choice of the hash function.1

To sum up, our simple combination of universal hashing with table resizing
yields a dynamic dictionary with the desired properties. The space requirements
of the table with chains is obviously Θ(n+m), which is always Θ(n). The expected
time of the Find operation is Θ(1). Into the modifying operations we need to add
the amortized Θ(1) time for rebuilding work, so we get amortized expected Θ(1)
time for Insert and Delete.
1Here it is supposed that the input is independent of the random choice (i. e. the adversary
doesn't know our random bits).
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Conclusion 6. There is a randomized dynamic dictionary structure that needs
Θ(n) words of space in the worst case and it meets the following bounds for any
sequence of operations. The Find operation needs Θ(1) expected time. The Insert
and Delete operations need Θ(1) amortized expected time.

Note that a dynamic dictionary can be a useful extension to any predecessor-
problem data structure. Maintaining a dictionary on the same set of keys only
needs Θ(1) amortized expected additional time per Insert and Delete. Then we
can implement Member by a call to Find on the dictionary (in Θ(1) expected
time) and it even allows us to associate every key in the set with a value, if the
original structure didn't support it. This scheme is also used in the next section
for decomposing the predecessor problem, where one �eld (high) that contains
a structure for the predecessor problem is paired with another �eld (low) that
contains a dictionary on the same set of keys.

4.2 HVEBT

As the �rst step in designing a space-e�cient structure we de�ne and analyze a
simple modi�cation of van Emde Boas trees that uses dynamic dictionaries from
the previous section instead of arrays. We will use the acronym HVEBT to refer
to the structure.
The basic idea of van Emde Boas layout is that the k bits of every stored number

are split into two parts where the most signi�cant bk/2c bits are used as an index
of tree that stores the remaining dk/2e bits recursively.2 Another way to view the
process is that the universe set U , denoting N ≡ |U |, is split into

√
N segments

of size
√
N (approximately).

De�nition 7. Let A ⊆ U ≡ {0, . . . , 2k − 1}, A 6= ∅. HVEBT(k) storing the set
A contains:

• min, max � the minimum and maximum value in A. The value in min is
not stored recursively in subtrees, but the max only works as a cache and
it is also stored recursively as any regular value.

• low � a dynamic dictionary indexed by keys from {0, . . . , 2bk/2c − 1} con-
taining nonempty subtrees of type HVEBT(dk/2e) as values. We will use the
dictionary as a black box, so we only need its implementation to meet the
criteria discussed in section 4.1.

• high � a subtree HVEBT(bk/2c) containing the nonempty indices of the low
dictionary.

2We will use bxc and dxe to denote the �oor and ceiling of x, respectively.
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The min and max �elds ensure two key properties. First, they allow to query
the border values in constant time, which is heavily used in algorithms for the
operations. Moreover, the fact that min isn't stored recursively means that any
child subtree stores less values than the whole tree, so the structure for sets of
constant size can be constructed in constant time (independent of k). Here we
make a compromise by storing just one value directly without recursion. That
will enable us to implement two useful additional operations.
The core of the decomposition is in the low �eld. The represented set A is split

into subsets Ai by the value i of the high halves of the numbers' bit-representations.
In mathematical notation we have Ai =

{
x ∈ A

∣∣ ⌊x/2bk/2c⌋ = i
}
. The values

within one subset have the same high halves of their bits, so only the low halves
are represented in a HVEBT with half bit-length. That is, the corresponding
HVEBT represents the set A′i =

{
x mod 2bk/2c

∣∣x ∈ Ai }3 and it is stored in the
low dictionary as a value associated with the key i (the value of the high bits
serves as the key). Note that only nonempty subsets have an entry in the low
dictionary and the minimum value in the stored set is excluded. The dictionary
itself can't provide any ordering-related operations, so the ordering of the subsets
is maintained in the high �eld. It stores the keys used in the low dictionary (the
i values) in a HVEBT subtree of half bit-width.
The recursive construction obviously stops when |A| = 1, where the only value

is stored in min. That happens in the worst case for all subtrees of a HVEBT(1)
structure.

Operations on HVEBT

We show here straightforward algorithms for operations on the HVEBT structure.
They are analogous to the well-known operations on standard van Emde Boas tree.
Together with algorithm description we present pseudocode notation to specify
a possibility of implementation more formally.
Performing the operations FindMin and FindMax is trivial, since the minimum

and maximum are always stored directly in the root. Creating a new tree contain-
ing one element is simple as well, it only initializes the border values and creates
a new empty dictionary, as shown in the pseudocode on the following page.
The rest of the operations uses simple auxiliary methods SplitBits and JoinBits.

They are set apart to make the remaining code more readable as it often needs
to work separately with both halves of bit representations of some values. The
pseudocode is shown on the next page.
We use operators from the C language to perform bit shifting and bit masking.

When using them we provide equivalents in mathematical notation. The bit twid-
dling operations are quite unusual on the �eld of theoretical computer science,
but we believe that here the notion of values as bit-strings is more suitable and

3We use �mod� to denote the modulo operator, which computes the remainder of division of
two natural numbers.
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illustrative than the equivalent power-of-two notations. The left shift by b bits
(denoted x� b) corresponds to multiplication by 2b, whereas the right shift by b
bits (denoted x� b) corresponds to division by 2b (we only consider nonnegative
numbers).

alg. HVEBT(k).NewTree(x) {creates a new structure storing value x}
min, max ← x
high ← null
low ← �a new empty dictionary�
return this

alg. HVEBT(k).SplitBits(x) {splits bits of x into high and low part}
var nl ← (k + 1)/2 {the number of low bits, nl = dk/2e}
var xh ← x� nl {the value of high bits, xh = bx/2nlc}
var xl ← x− (xh � nl) {the value of low bits, xl = x− xh · 2nl}
return (xh, xl)

alg. HVEBT(k).JoinBits(xh, xl) {does exactly the inverse of SplitBits}
var nl ← (k + 1)/2
return (xh � nl) + xl {= xh · 2nl + xl, the joint value}

Before we discuss the nontrivial operations Find, Insert, Delete and Successor in
more depth, we want to point out the key parts of their design. Some of the algo-
rithms are complicated, because many special cases can occur, but the basic idea
is very simple. The algorithms always solve the problems by recursively solving
the problems on the two halves of the input, that is by performing operations on
the subtrees. The only important trick is to allow at most one nontrivial recursive
call in any case. We will make sure that on every level of recursion we only make
a constant number of primitive operations and a constant number of dictionary
operations in the worst case. Since the dictionary operations need either expected
constant time or expected amortized constant time (according to Conclusion 6),
for the total time we will get an expected or expected amortized bound propor-
tional to the depth of the tree.4 We bound the depth to O(log k) in the lemma
below, so ensuring these properties on the operations discussed on several follow-
ing pages implies the O(log k) time complexities summarized in Conclusion 9 on
page 28.

Lemma 8. The depth5 of HVEBT(k) is at most dlog ke+ 1.

Proof. We already noted, that a HVEBT(1) structure can only have one child,
which is a leaf. According to De�nition 7, the parameter k decreases to dk/2e
4Note that here the expectation will only come from the usage of dynamic dictionaries, so
the averaging is independent of the input set. That means there are no �bad� inputs, only
unlucky combination of inputs and (pseudo)random bits.

5We consider that the root node is in depth 0 and every subtree is depth one larger than the
parent. The depth of the tree is then the maximum from the depth of all nodes.
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and bk/2c in the child nodes. Consequently, increasing the parameter k can't
decrease the parameter in the descendants, so we can bound the maximal depth
of HVEBT(k) by the maximal depth of HVEBT(k′) for an arbitrary k′ > k. We
choose the nearest power of two, k′ := 2dlog ke.
For a power of two we have dk/2e = bk/2c and this also equals a power of two,

so the property is inherited in all descendants. As a result we have a HVEBT(1)
in the depth log k′, so the total maximum depth of HVEBT(k′) is 1 + log k′. As a
result, the maximum depth of HVEBT(k) for any k ∈ N is bound by 1 + log k′ =
1 + log

(
2dlog ke

)
= 1 + dlog ke.

Member operation When testing membership of a value x, the algorithm �rst
checks if x is stored directly in the min �eld. If it isn't and the node contains
subtrees, the algorithm splits the bits of x into the low and high part (xh and
xl). Then it looks up the high part xh in the low dictionary and the associated
subtree is recursively tested on membership of the low part xl. The value x is
then contained in the represented set i� both the lookup and the recursive call
succeed. The pseudocode is on the current page.
The search corresponds to a pass from the root to some inner node, performing

one dictionary lookup and a little constant work on every level. Since one lookup
takes expected constant time and the depth is bounded by O(log k), the whole
operation needs O(log k) expected time.

alg. HVEBT(k).Member(x) {tests membership of x, returns true or false}

{special cases}
if x = min then

return true
if high = null then {no other element is in the tree}

return false

{the general case}
var (xh, xl)← SplitBits(x)
var t← low.Find(xh) {�nds the subtree for values sharing xh}
if t = null then

return false {the subtree doesn't exist}
else

return t.Member(xl) {search the subtree}
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Successor operation From the standard predecessor operations there remain
Predecessor and Successor. Since the algorithms are completely symmetrical, we
only discuss the latter. The algorithm that searches for the successor of x �rst
checks if it is less than the min �eld. If it is, min is the result. Otherwise, the
value is split into xh and xl.
Then the subtree with key xh is looked up in the dictionary. If it is found and

its maximum is less than xl, we know that the searched value is represented in
the subtree. The successor of xl is found recursively in the subtree and its value
joined with xh makes the result. Otherwise (when the subtree doesn't exist or
its maximum is at least xl), the searched value is represented in the minimum of
the next subtree. The algorithm recursively �nds the successor of xh in the high
structure and uses it as a key for the low dictionary to �nd the subtree (if the
recursion fails, no successor of x exists). The result is formed by joining the value
of the subtree's key with its minimum.
Note that again we don't make two recursive calls at the same time. Either

the algorithm directly �nds a suitable subtree and searches it recursively for the
successor, or the algorithm doesn't �nd it directly and it looks for the next one
by calling successor on the high �eld and takes its minimum. We show the
pseudocode on this page.
The algorithm only performs at most two lookups on the dictionary and a

recursive call. As one lookup takes expected constant time, the whole operation
needs O(log k) expected time. No amortization is needed in this case, just as in
the Member operation.

alg. HVEBT(k).Successor(x) {�nds the minimal element greater than x}
if x < min then

return min

var (xh, xl)← SplitBits(x)

{�rst try among the elements starting with xh}
var t← low.Find(xh)
if t 6= null and xl < t.FindMax() then

var yl ← t.Successor(xl)
return JoinBits(xh, yl)

{now try the next subtree}
var yh ← high.Successor(xh)
if yh 6= null then

var yl ← low.Find(yh).FindMin()
return JoinBits(yh, yl)

else

return null
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Insert operation The algorithm for insertion of a value x �rst handles the corner
cases. If checks if the value isn't already contained in the min �eld to avoid double
insertion. If x is less than the minimum, the values are swapped and we continue
inserting the former min value (it wasn't represented in the subtrees). Then the
max �eld is updated if x becomes the new maximum value (but we continue the
insertion anyway, because the max value only serves as a cache).
In the general case the algorithm splits x into xh and xl and it looks up xh

in the low dictionary. If the lookup succeeds, the associated subtree represents
the correct subset and the algorithm recursively inserts xl into the subtree. If
the lookup fails, a new subtree containing only xl is created, it is added into
the dictionary with key xh and the key xh has to be also inserted into the high
subtree.
Note that the two recursive calls for insertion into a HVEBT subtree are exclu-

sive � either the lookup succeeds and we insert into the found subtree, or it fails
and we only insert into the high subtree. The two cases can't occur both at the
same time. We present the pseudocode on on the next page.
On one level of recursion the Insert algorithm does some constant work and at

most two dictionary operations. Since one of the operations is insertion, which re-
quires expected amortized constant time, the total expected amortized complexity
is bounded by O(log k).

Delete operation The algorithm for deletion of value x starts by handling sev-
eral special cases. Deleting the last value destroys the whole structure. When
deleting the minimum, the algorithm �nds its replacement as follows. It �nds the
high bits by a FindMin query on the high �eld, then it looks up the corresponding
subtree in the low dictionary and �nally it simply queries for the minimum of
the subtree and joins the halves of the bit representation (no recursion is needed
here). After that the algorithm continues as if deleting the new minimum, so it
isn't represented twice.
The general case is very simple � the deleted value is split into xh and xl, the

value of the high bits xh is looked up in the low dictionary and the value of the
low bits xl is recursively deleted from the found subtree. If either the lookup or the
recursive delete fails, the value wasn't present in the structure. It is necessary to
handle the case, when the recursive delete completely empties the subtree. Then
the empty subtree has to be removed from the dictionary and also its key xh has
to be deleted from the structure in high �eld. This makes a second recursive
call of delete, but we do it only when the �rst call immediately returned without
further recursion, because deletion from a one-valued set is an O(1) operation in
the worst case. As a result we always make at most one nontrivial recursive call
and thus we meet the stated criteria.
Finally, if the operation deletes the maximum value, it has to �nd the new

one and store it in the max �eld. That is exactly symmetrical to �nding the
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alg. HVEBT(k).Insert(x) {inserts x into the tree, returns true on success}

{special cases}
if x = min then

return false
if x < min then

swap(x,min) {continue inserting the former minimum}
else if x > max then

max ← x

{the general case}
var (xh, xl)← SplitBits(x)
var t← low.Find(xh)
if t 6= null then

return t.Insert(xl)

{create a new subtree}
var u← HVEBT(dk/2e).NewTree(xl)
low.Insert(xh, u)
if high 6= null then

high.Insert(xh)
else

high ← HVEBT(bk/2c).NewTree(xh)
return true
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replacement for minimum, except that we don't delete the value. The pseudocode
for Delete is shown on this page.
Similarly to insertion, the Delete algorithm only performs some constant work

and at most three dictionary operations. One of them is deletion, which needs
expected amortized constant time. Consequently, the whole algorithm needs ex-
pected amortized O(log k) time.

alg. HVEBT(k).Delete(x) {deletes x from the tree, returns true on success}

{special cases}
if high = null then {the tree contains one element}

if x = min then

this ← null {destroying the structure}
return true

else

return false
if x = min then {we �nd the new minimum and delete it from the subtree}

var yh ← high.FindMin()
var yl ← low.Find(yh).FindMin()
min ← JoinBits(yh, yl)
x ← min {we continue deleting the new minimum}

{the general case}
var (xh, xl)← SplitBits(x)
var t← low.Find(xh)
if t = null or t.Delete(xl) = false then {x was not found in the structure}

return false

{more special cases}
if t = null then {we emptied the subtree}

low.Delete(xh)
high.Delete(xh) {second recursion, but the �rst one was trivial}

if x = max then {we need to update the max �eld}
var yh ← high.FindMax()
var yl ← low.Find(yh).FindMax()
max ← JoinBits(yh, yl)

return true

Conclusion 9. In HVEBT(k) containing n elements the operations NewTree,
FindMin and FindMax take constant worst-case time. The operations Insert and
Delete take O(log k) amortized expected time. The operations Member, Predeces-
sor and Successor take expected time O(log k) = O(log logN).
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Space requirements

The original VEBT structure worked similarly, but HVEBT was rather inspired
by a simpli�ed modern implementation from Demaine's lecture notes [8] that only
di�ers from HVEBT by using arrays as dictionaries instead of hash tables. Using
arrays has the advantage that the structure isn't randomized and thus the time
bounds are worst-case. On the other hand it causes that the memory consumption
depends more on N ≡ |U | than on n ≡ |A|, because only the array in the root
node takes Θ

(√
N
)
space.

In the �rst publication about VEBT [26] an O(N log logN) space bound was
shown and it was soon improved in [27] to Θ(N) by clustering the stored elements
(we will use this technique in section 4.3). The clustering technique could also be
used on Demaine's implementation, but we present a proof that even without it
the structure only needs Θ(N) memory as well.

Lemma 10. Let S(N) denote the number of words used by the Demaine's VEBT
structure (like HVEBT, but implemented with arrays as dictionaries) for the uni-
verse set of size N = 2k. Then S(N) ∈ O(N).

Proof. We will show by induction that ∃c, d > 0 ∀N ≥ 2 : S(N) ≤ cN − d. We
can suppose that S(2) is a constant, so let us choose it as the base case. By the
recursive construction for N ≥ 4, the universe set is split into u segments of size
v and u, v ≥ 2. That gives us

S(N) = S(uv) = uS(v)︸ ︷︷ ︸
subtrees

+S(u)︸︷︷︸
high

+ Θ(u)︸ ︷︷ ︸
low, etc.

≤ uS(v) + S(u) + eu

for some constant e > 0. In the construction we have u, v < uv, so we can use the
induction hypothesis, resulting in

S(uv) ≤ u(cv − d) + cu− d+ eu = c(uv)− d+ u(c− d+ e) .

Now it su�ces to satisfy c− d+ e ≤ 0 and the base case S(2) ≤ 2c− d. That can
be done by choosing c := S(2) + e and d := c+ e = S(2) + 2e.

In this light it might seem that our HVEBT containing n elements only needs
Θ(n) space thanks to using linear-space dictionaries, but that is not true.6 The
problem is when too many inputs get into the high subtree (it can be as many
as n− 1). Let us show a counter-example � de�ne the set Ak of k-bit integers for
some k = 2l

Ak :=
{

1� (k − 2i)
}l
i=0

or equivalently Ak :=
{

2k−2
i
}l
i=0

6The scribed lecture notes from Demaine [8, 2003: lecture 2] claim that using hashing instead
of arrays (that is essentially our HVEBT) results into a structure that only needs Θ(n) space.
They also provide a sketch of a proof, but it is contradicted by our counter-example (there
is a barely noticeable problem in their proof sketch).
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Obviously we have |Ak| = l+ 1 = 1 + log k, minAk = 1� (k− 2l) = 2k−2
l

= 1.
Moreover it holds

A2k = {1} ∪ {x� k : x ∈ Ak} = {1} ∪ {x2k : x ∈ Ak} .

Now consider storing Ak in HVEBT(k) for an arbitrary k = 2l ≥ 2. The minimal
value 1 is stored exclusively and the rest of the inputs is bit-split in half. The
lower halves are always zero (which is not interesting), but the upper halves make
exactly the set Ak/2. In the root node we need Ω(l) = Ω(log k) space for the
low �eld and we need to store the set Ak/2 in the high �eld. That gives us∑1

i=l Ω(i) ⊆ Ω(l2) space for a set of size l + 1 = 1 + log k, which is clearly not
linear.
However, it is simple to show a little higher upper bound ofO(n log logN). That

tightly matches our counter-example, because there n = l + 1 = 1 + log logN .

Lemma 11. The number of HVEBT nodes in a HVEBT(k) structure containing
n elements is O(n log k).

Proof. By induction on the modi�cation algorithms. HVEBT(k) containing one
number has one node. The insertion algorithm can allocate at most one new
node on every level of recursion. Since the depth of HVEBT(k) is O(log k), one
insertion can add at most O(log k) nodes. Now it su�ces to note that the shape
of the structure is exactly given by the contents of the stored set, so even after
performing Delete operations, the structure looks as if it was created by insertions
only. As a result, any HVEBT(k) containing n elements has at most O(n log k)
nodes.

Corollary 12. The number of words needed by a HVEBT(k) structure containing
n elements is O(n log k).

Proof. We know that dictionaries need space linear in the number of contained
elements (Conclusion 6). Therefore, the space consumed by every low dictionary
can be split into constant pieces and charged to the corresponding child nodes.
Doing this in the whole HVEBT leaves every node with only a constant amount
of space that is needed for the min and max �elds and for the amount charged
from the parent node. The number of nodes is bound by O(n log k) according to
the previous lemma, which completes the proof.

Additional operations

There are many more operations that can be done e�ciently on HVEBT structures
(for example combination of several sets by a boolean formula), but here we will
only need two additional algorithms � for building a new structure and for iterating
its contents (implemented as listing all elements into a queue).

30



List operation Operation List outputs all contained elements in increasing or-
der into a queue. In order to make the recursion work e�ciently, we added an
argument xa � the value to be added to every output element. The algorithm is
very simple, it �rst outputs min+xa into the queue and then it creates a tempo-
rary queue and �lls it by a recursive call on the high subtree. All elements of
the queue are taken in order and for every value xh the corresponding subtree is
found in the low dictionary and its contents is recursively listed directly into the
output queue, using xa+JoinBits(xh, 0) as the additive element. Here the additive
element is increased, because the elements in subtrees in low are missing the high
bits and their value should be xh (addition is used as an alternative method of
joining the bit representations).
The pseudocode for List is shown on the current page. It is clear that the

algorithm only needs expected time proportional to the space usage of the struc-
ture, because it touches every node exactly once, each operation on queues takes
worst-case constant time and every lookup in a dictionary takes expected constant
time.

alg. HVEBT(k).List(xa, Q) {pushes all elements in increasing order into Q}
Q.Push(xa + min)
if high 6= null then

var H ← �a new empty queue� {to contain all valid high bit halves}
high.List(0, H)
for all xh in H do

low.Find(xh).List( xa + JoinBits(xh, 0), Q )

Build operation The inverse operation Build for building a structure from a list
of numbers is more complicated. It is essential here that the input is already in
increasing order. Moreover, to lower the time complexity of the algorithm we do
not try to �nd which parts of the input belong to individual subtrees, but we
let the recursion �nd the part that �ts in. An additional argument xs is added
containing the value to be subtracted from every element in the queue. When
a value too big for the structure is encountered (≥ 2k after subtracting xs), the
build is stopped and the value remains the �rst in the queue.
The building starts by popping the �rst value of the queue into the min �eld

(after subtraction of the argument), also the low �eld is initialized to an empty
dictionary and a new empty queue Qh is created to gather the future contents of
the high �eld.
Then the algorithm loops while the input queue is nonempty. In every iteration

it �rst looks at the next value in the input queue, subtracts the argument xs and
computes xh � the high half of the result's bit representation. That is the key
of the next subset to build. If the value is too high the loop is broken, since the
allowed portion of the input queue was consumed. Otherwise a subtree is built
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recursively by passing the same input queue and a new value to subtract which is
computed as xs+JoinBits(xh, 0) (here the recursion uses subtraction to cancel out
an unknown number of starting bits). The newly built subtree is inserted with
key xh into the low dictionary and the key xh is also pushed onto the Qh queue.
Then the loop continues.
After the loop stops (either by emptying the input queue or reaching a big

value), it only remains to recursively build the high structure from the Qh queue
and to �nd the maximum (the same as in the Delete operation). We show the
pseudocode for Build on this page.

alg. HVEBT(k).Build(xs, Q) {constructs a new structure}
min ← Q.Pop() − xs
low ← �a new empty dictionary�
var Qh ← �a new empty queue� {to hold indices of subtrees in low}

{build the subtrees recursively}
while not Q.Empty() do

var x← Q.Top() − xs {examine the next element to store}
if x ≥ (1� k) then {x is too big for this structure, end the loop}

break

var (xh, xl)← SplitBits(x)
var t← HVEBT(dk/2e).Build( xs + JoinBits(xh, 0), Q )
low.Insert(xh, t)
Qh.Push(xh)

{build the summary tree high and �nd max}
if Qh.Empty() then {no subtrees were created}

high ← null
max ← min

else

high ← HVEBT(bk/2c).Build(0, Qh)
var xh ← high.FindMax()
var xl ← low.Find(xh).FindMax()
max ← JoinBits(xh, xl)

return this

Now we prove, similarly to List, that Build needs expected time proportional to
the space complexity of the resulting structure. From the algorithm description it
is clear that the time needed to build one vertex of the tree (not counting recursion)
is given by the number of iterations of the while-loop. In every complete iteration
we build one subtree and consume expected amortized constant extra time as
we perform one insertion into a dictionary and several constant-time operations.
Since we build the dictionary from scratch, the total expected time spent on
insertions into the dictionary is given by the �nal number of its elements, which
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is the number of subtrees in the low �eld. Now we can split the total time of
iterating without recursion into equal (de-amortized) parts and charge one part
(expected constant time) to the each child node. That will only leave constant-
time work common to all iterations (the constants are independent of k). We
apply the scheme recursively, so every vertex of the structure is at most charged
expected constant time from its unique parent. That leaves at most expected
constant time associated with every vertex of the tree, which completes the proof.

Conclusion 13. Using the Lemma 11, HVEBT(k) with n elements can perform
the operations List and Build in expected O(n log k) time.

The pair of operations List and Build is going to be very useful as a straightfor-
ward way of transforming a set stored by a HVEBT in expected O(n log k) time.
The contents is simply listed into a queue, there the elements are transformed and
�nally the structure is constructed from the result. We could write special algo-
rithms to perform individual types of transformations directly on HVEBTs, but
it would be less transparent and it wouldn't help the theoretical analysis either.

4.3 LVEBT

It is possible to reduce the space requirements from O(n log k) to Θ(n) by a simple
clustering trick without increasing the asymptotic times of mentioned operations.
The clustering was originally used by van Emde Boas [27] and also in the �rst
publication about the hashed VEBT [19]. We will denote this modi�ed structure
LVEBT to signify its linear space usage.
LVEBT(k) is composed of two levels. The contained numbers are grouped

into Θ(n/ log k) clusters of size O(log k) and the minimum of every cluster is
stored in �eld top which is a HVEBT(k) structure. The implementation of the
cluster structure can be, for example, a linked list � it can �nd the minimum and
maximum in constant time and perform all other operations in linear time in the
worst case. To be able to �nd clusters by their minimums, we can either associate
every key in top structure with a pointer to the corresponding cluster structure,
or we can maintain another dictionary mapping the minimums (or alternatively
all elements) to the clusters.
When operating on LVEBT(k), we �rst �nd the right cluster by one or two Pre-

decessor/Successor queries on the top �eld containing cluster minimums. Then
we perform the desired operation inside the found cluster and �nally, if the oper-
ation modi�ed the cluster, we may have to correct the cluster size. Similarly to
(a,b)-trees we choose parameters a, b ∈ Θ(log k). When a cluster gets bigger than
b, we split it. When it gets smaller than a, we move elements from its neighbour
or we join it with its neighbour. As a consequence we might have to change the
elements in top, but one operation on LVEBT(k) can only result in a constant
number of operations on top. If we used a dictionary to map cluster minimums
or all elements to the corresponding clusters, we also have to update the mapping,
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but the number of a�ected clusters is O(1), so the number of required operations
on dictionaries is O(log k), which exactly �ts into the O(log k) expected time of
HVEBT(k). To sum up, the asymptotic complexities of the predecessor problem
operations remain the same as in HVEBT(k).
The advantage of maintaining a mapping from all elements to its cluster is that

the Find operation can be implemented in Θ(1) expected time by only testing
the existence of the mapping. However, that is no signi�cant improvement � the
asymptotic complexities of other operations are the same and the constants of
modifying operations increase. Moreover, we can modify any structure for the
predecessor problem in this way, as noted on page 21.
Operation List can be done in LVEBT(k) by calling top.List and listing the

contents of the returned clusters. Similarly, for Build it su�ces to create the
clusters from consecutive blocks of b elements and use HVEBT(k).Build on the
minimal values to create top. Using Conclusion 13, the running time of List

and Build is clearly proportional to the total space usage of LVEBT(k), which is
Θ(n)︸ ︷︷ ︸
clusters

+O
(n
a

log k
)

︸ ︷︷ ︸
top �eld

= Θ(n).

Conclusion 14. In LVEBT(k) containing n elements the operations FindMin and
FindMax take constant time in the worst case. The operations Find, Predecessor
and Successor take expected time O(log k) = O(log logN). The operations Insert
and Delete need expected amortized O(log k) time. The operations List and Build

consume Θ(n) time and the structure needs Θ(n) words of space.

4.4 An alternative

Willard [31] proposed a di�erent approach of reducing the enormous space usage
of original van Emde Boas trees. We will just brie�y present their main ideas.
When operating on a VEBT, the algorithms essentially �rst �nd the length of
the longest pre�x common to the query number and any contained number (by
binary search on the bits), and then they perform some simple action to �nish
the operation. The x-fast trie works on the same principle, but it is realized in a
di�erent way than VEBT.
Binary trie of depth k is a natural way to store any set of k-bit numbers. A node

in depth d represents a d-bit pre�x and it is present i� there is at least one stored
number with this pre�x. As a special case, all leaves are in the depth k and they
correspond one-to-one to the stored numbers. In x-fast tries, all present nodes
of such a binary trie are grouped by depth and stored in dictionaries where the
nodes are indexed by the binary pre�xes they represent. There is no need to store
any pointers between the nodes because every node can have at most two child
nodes and their existence can be easily found by a lookup in the corresponding
dictionary.

34



In this layout it is simple to binary-search for the longest present pre�x common
with the query by lookups in the dictionaries. This process �nds the node of the
trie where the path to the query number would fork away from the current trie
and it takes Θ(log k) lookups. To be able to search predecessors and successors
quickly, all stored numbers are organized in a doubly linked list, where every
number is referenced from its leaf in the trie. Moreover, every inner node that
misses a son contains a direct pointer to the stored number that lies �closest� to
the missing subtree. This pointed-to number is either the minimal or the maximal
stored number with matching pre�x (depends on whether the missing son is the
left one or the right one) and it is also the predecessor or successor of the query,
assuming the query number is not already stored in the trie. The other neighbour
can be found by one step in the linked list.
One insertion in an x-fast trie of depth k can allocate at most k dictionary

indices, so the space is bounded by O(nk). To reduce the bound to Θ(n), Willard
uses clustering that is the same as the one used in LVEBT, except for the a and b
bounds that need to be Θ(k). The resulting structure is called y-fast trie. Since the
clusters can be represented by balanced trees, it is still possible to achieve O(log k)
time per operation inside the clusters and to maintain the overall O(log k) time
bound. Willard proposes to use a dynamic perfect hashing scheme for implemen-
tation of the dictionaries, so the bound for �nding predecessors and successors is
worst-case and the bound for modifying operations is expected amortized.
To sum up, the y-fast trie is an alternative to the LVEBT structure. When

using the same type of dictionaries, it can achieve the same asymptotic bounds
on time and space. The tries appear to be a little simpler, but we chose to use
LVEBT as a substructure for our design in the following chapter before we knew
that there already was a di�erent solution.
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5 Designing a new structure

When designing a new structure, we will require linear space usage and try to
minimize the expected amortized time needed for operations from the predecessor
problem. Our aims are the same as most of the research discussed in chapter 3,
so we will try to use the same conventions to enable easier comparison.
We will focus on the model of µ-random insertions and random deletions, where

µ is an unknown (sα, s1−δ)-smooth distribution (see de�nitions on pages 11�12).
The models for modi�cation ensure that at any point of execution the stored set
is µ-distributed, despite the insertions could be arbitrarily mixed with deletions.
Then we will be able to use the �smoothness� of the stored set in a manner similar
to the known data structures discussed in chapter 3.
We will make use of the LVEBT structure which managed to decrease the

needed space to the desired bound. However, for sparsely populated universe sets
its operation time of O(log logN) is too high. Thus the most important part
of the design is to understand what the smoothness property ensures about the
stored set, so the structure can utilise it to achieve a better performance in terms
of n, the size of the represented set (contrary to N , the size of the universe set).

5.1 Static analysis of bucketing

Let µ be a (sα, s1−δ)-smooth distribution for some α, δ > 0. The De�nition 3
(smoothness) gives us

∃β ∀c1, c2, c3 a ≤ c1 < c2 < c3 ≤ b ∀s ∈ N

Pr

[
X ∈

〈
c2 −

c3 − c1
sα

, c2

〉 ∣∣∣∣ X ∈ 〈c1, c3〉] ≤ βs1−δ

s
= βs−δ.

We choose to cover the whole range 〈c1, c3〉 := 〈a, b〉. That removes the condition-
ing, because it is always ful�lled.

∃β ∀c2 a < c2 < b ∀s ∈ N Pr

[
X ∈

〈
c2 −

b− a
sα

, c2

〉]
≤ βs−δ

Now we consider dividing the range 〈a, b〉 into at least nd equally-sized buckets
for some parameter d > 0 that will be chosen later (n is the size of the set to be
stored). That means the bucket index where a value belongs is given by its �rst
d log n bits.
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Note that this technique is di�erent from the clustering used in LVEBT, on the
other hand it is almost the same as splitting of bit representations in HVEBT.
The clusters were created by the number of contained elements and thus the
transformation decreased the size of the stored set, resulting in lower space usage.
Bucketing, however, groups elements with many common starting bits, so it de-
creases the size of the universe set instead. That is essential, because we need to
decrease the query time, which only depends on universe size in van Emde Boas
tree variants.
If we choose c2 as the endpoint of an arbitrary1 bucket B and choose s := bnd/αc,

then sα = bnd/αcα ≤ nd and thus the probability covers at least the whole bucket.
Let us denote pB ≡ Pr [Xµ falls into the bucket B], then we get

pB ≤ βs−δ ≤ βbnd/αc−δ ≤ β
(
nd/α − 1

)−δ
.

Since lim
n→∞

(nd/α)−δ

(nd/α − 1)−δ
= 1, we have pB ∈ O(n−δ

d
α ).

In our random process the elements are taken independently, so the number of
elements in B is given by the binomial distribution. If we use µ to generate n
values in 〈a, b〉, then

nB ≡ E [number of values in B] = n · pB → nB ∈ O(n1−δ d
α ).

By choosing d ≥ α
δ
we ensure that nB ∈ O(1), because α, δ > 0. We summarize

our analysis in the following lemma.

Lemma 15. Let us generate n values by a (sα, s1−δ)-smooth distribution for some
α, δ > 0, and divide the whole range into at least nα/δ equal-sized buckets. Then
the expected number of elements in an arbitrary bucket is O(1).

The number of elements in a bucket is expected to be constant, but it can
be bounded much stronger. For example, choosing d ≥ 2α

δ
and using Cherno�

bounds [21, chapter 4.1] would moreover guarantee that the bad behaviour is very
rare. We don't do this �ner analysis, because there is a more pressing problem
that we do not attempt to solve in this text � the unrealistic character of the
used models. We use them for our analysis to enable comparison with known
structures, as we only found one published structure that uses di�erent models
(discussed in section 3.6 on page 17).

1There is a technical di�culty with the last bucket, because the de�nition (taken from referred
papers) doesn't allow us to choose c2 = b for some unknown reason. However, we can choose
c2 := b − ε for such an ε that the interval covers the whole bucket except for the maximal
value. Adding one value to the last bucket separately then doesn't a�ect the validity of the
implied Lemma 15.
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5.2 An amortized scheme

In the analysis we found out that in our model the �rst Θ(log n) bits are likely
to be an almost unique identi�er among n elements. We will use k to denote this
number of signi�cant bits. We are going to use van Emde Boas tree (LVEBT) to
represent the k starting bits, which will give us O(log log n) expected amortized
time for any operation, but we still need to solve two problems. One of them is
the fact that k needs to change during the life of the structure according to n
to satisfy Lemma 15. The other problem is that we want the structure to work
e�ciently without knowing the parameters α and δ.
To remove dependency on the distribution's parameters, we simply choose

a growing function instead of the factor α
δ
. The time complexity of van Emde Boas

trees is so low that we can a�ord to use a Θ(log n) function, giving us k ∈ Θ(log2 n)
signi�cant bits. More precisely, we will maintain k ∈

(
1
2

log2 n, 2 log2 n
)
. When

the structure is small (1
2

log n < α
δ
), we might not �t into Lemma 15, but that

is only for inputs of constant size (n < 22α/δ). It follows that the asymptotic
complexities aren't a�ected and the expected size of any nonempty bucket is still
O(1).
Note that this kind of averaging for the size of buckets is di�erent from the

one generated by our dictionaries. In the bucketing, similarly to all methods in
chapter 3, there exist bad sets of input that always fall into the same bucket and
thus they always cause the structure to perform slowly. On the other hand, in
our dictionaries we avoided such dependency on the input by utilising universal
hashing in the implementation. In this way the dictionary operations were made
to work in Θ(1) time on average for any set of input values, only considering the
average over the (pseudo)random bits.
To change k we rebuild the structure periodically. We will always choose k as

a power of two and whenever log2 n reaches a di�erent power of two, we rebuild
the whole structure with the new k. That will exactly ensure that we keep k in
the desired interval.
The rebuild clearly happens when the value of log2 n changes from log2 n0 to

2 log2 n0 or 1
2

log2 n0, that is when n changes from n0 to n
√
2

0 or n1/
√
2

0 . It follows
that during a rebuild, the number of modifying operations since the last rebuild
is Ω(n), where n is the current number of contained values.
We suppose that the rebuilding time is at most O(n)-times larger than the time

needed for modifying operations, because otherwise we could simulate the rebuild
by O(n) FindMin, Delete and Insert operations. It follows that the rebuilding time
can be amortized into additional time that is asymptotically at most equal to the
modi�cation time. As a consequence we can charge the rebuilding time to preced-
ing modifying operations in a way that the expected amortized asymptotic times
of modi�cation operations aren't a�ected by the spread-out price for periodical
rebuilds.
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5.3 Implementing the structure

In this section we describe in more detail a possible implementation of the proposed
amortized structure. We will denote the new structure storing l-bit numbers as
SVEBT(l) where �S� stands for �smooth� (the used model of input distribution).
The bucketing used in SVEBT is like the HVEBT decomposition, only the bit
representations of the stored numbers are split in a di�erent position.

De�nition 16. Let A ⊆ U ≡ {0, . . . , 2l − 1}. The SVEBT(l) structure storing
the set A contains:

• size � the current size of the stored set (size = n ≡ |A|)

• k � the current number of signi�cant bits. k is always a power of two and
it changes to log2

size whenever the expression reaches another power of
two. More precisely, we maintain an invariant 1

2
< log2

size

k
< 2 . For the

border case where size < 2 we de�ne k = 0.

• low � a dynamic dictionary indexed by keys from {0, . . . , 2k − 1} containing
nonempty bucket structures as values.

• high � an LVEBT(k) structure containing exactly the set of indices of
nonempty buckets from the low dictionary.

Similarly to the HVEBT decomposition, the stored set is split into subsets by
the values of high k bits of numbers' bit representations. Every subset is stored
in a bucket structure which is stored as a value in the low dictionary and it is
identi�ed by the common high k bits as the key. Like in HVEBT, the numbers
in bucket structures have their high k bits zeroed-out (although it wouldn't be
necessary here). The structure in the high �eld again represents the ordering of
the subsets by their keys.

The bucket structure

All the substructures are used as black boxes, so they can be replaced by anything
else that provides the required operations. We need the bucket structure to provide
the standard predecessor-problem operations. We also use the additional List and
Build operations, but it is su�cient to simulate them by the standard operations
as discussed in the previous section 5.2. There we also showed that the expected
size of any bucket is O(1), so even if the implementation needed linear time in
the number of elements in the bucket, the expected complexity of the operations
would still be O(1).
We also require that the bucket structure takes space linear in the number of

contained elements. That will ensure that all the buckets together take O(n) space
(where n is the size of the whole set stored in SVEBT), because every contained
element belongs into exactly one bucket and the empty buckets are not stored.
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Together with linear space usage of the LVEBT and dictionary structures in the
high and low �elds, we get that the total space needed by SVEBT is O(n) in
the worst case.
The most important parameter a�ected by the implementation of buckets is the

amortized time of the operations (not expected), because for a su�ciently large
n, all n inputs can get into one bucket. Consequently, the amortized performance
of SVEBT is the same as the amortized performance of the bucket structure.
Therefore it is best to use Andersson's dynamization of the static structure from
Beame and Fich which has an asymptotically optimal dependency of amortized (or
worst-case) time on n while using O(n) space. Their structure and the possibility
of dynamization were brie�y mentioned in section 2.2 on page 8, but we won't
discuss it in more depth as it is very complicated. Anyway, in practice it would
probably be better to use some more lightweight structure for the buckets. For
example, various balanced trees o�er a good tradeo� between simplicity and the
O(log n) worst-case performance.

Operations on SVEBT

The algorithms for operations on SVEBT are almost the same as those on HVEBT
due to the same nature of decomposition. Thus we only describe the di�erences.
The bit representations in SVEBT aren't split in halves, but into k most sig-

ni�cant bits and the remaining bits. The SVEBT structure don't have to care
about the minimum and maximum value (these aren't needed to be maintained,
although they could be), but in addition the modifying operations need to main-
tain the current size of the stored set. That together makes a constant time
di�erence per operation in the worst case.
It follows that when performing the standard operations from the predecessor

problem, the SVEBT algorithms do some constant work plus at most a constant
number of dictionary operations plus at most one nontrivial call to the LVEBT(k)
structure in the high �eld or to one of the bucket structures. Since the expected
size of any bucket is constant and the dictionary operations take expected constant
or expected amortized constant time, the asymptotic times needed for operations
on SVEBT are given by the the times required by the corresponding operations
on LVEBT(k) which is O(logk) = O

(
log(log2 n)

)
= O(log log n) (according to

Conclusion 14).
The additional operations List and Build are also little a�ected. When per-

forming List, the indices of the buckets are �rst listed from the high �eld into
a temporary queue, then the buckets are listed in order into the output (adding
some value to the numbers as in HVEBT). Building �rst �nds the size of the
set and computes the corresponding k value. Then all buckets are constructed
in order and inserted into the low dictionary, storing the keys into a temporary
queue at the same time. Finally all the keys are passed to the Build method for
the LVEBT(k) structure and stored in the high �eld.
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The last signi�cant change to consider is the periodical rebuilding. During the
modifying operations Insert or Delete, when the value of log2

size reaches another
power of two than k, the whole SVEBT structure is rebuilt. Using the additional
operations, the whole contents is listed into a queue and an SVEBT with the new
k is built from scratch. In the previous section we already showed that the time
needed for rebuilding can be amortized into the modifying operations without any
impact on the asymptotic performance.

Conclusion 17. We combined LVEBT with bucketing to obtain a new structure
for the predecessor problem. The SVEBT structure needs Θ(n) words of mem-
ory. When following the model of µ-random insertions and random deletions for
unknown α, δ > 0 and an unknown (sα, s1−δ)-smooth distribution µ, the time
bounds are as follows. The Member, Successor and Predecessor operations need
expected time O(log log n). The operations Insert and Delete need expected amor-
tized O(log log n) time. When using the amortized structure of Beame and Fich
in buckets [4, Corollary 4.6], the operations need Θ

(√
log n/ log log n

)
worst-case

or amortized time (depending on whether they change the stored set).

In practice, the rebuilding wouldn't have to be done from scratch, but some
parts of the structure could be reused. That wouldn't a�ect the asymptotic per-
formance, but it would probably still be very useful for a real implementation. We
can utilize the fact that k is always doubled or halved, which correlates with the
bit-splitting decomposition in the HVEBT structure. The buckets in low will be
split or merged, but these will mostly be one-bucket�to�one-bucket transforma-
tions. Consequently, the clusters in LVEBT in the low �eld will mostly stay the
same and thus only the number of bits of their minimums will change. That is,
the numbers in low.top will likely only change their bit lengths. As they are
stored in an HVEBT structure, the parts can be directly reused. When doubling,
the low.top becomes the new low.top.high and similarly, when halving, the
low.top.high becomes the new low.top. This was only an idea of where we
can save some work � we don't discuss it further, because obviously it wouldn't be
useful for the time or space analyses and we feel that the design of SVEBT isn't
yet a structure directly usable in practice, because its design was driven by a very
unrealistic model of smooth distributions and independent modifying operations.

5.4 Comparison with known structures

The properties of the proposed structure are very similar to the Augmented Sam-
pled Forest and the structure by Kaporis et al. that were discussed in chapter 3.
For example, Kaporis et al. also use bucketing to decrease the size of the universe,
but the top level is di�erent and they also regulate the bucket sizes instead of the
depth.
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Both of the published structures also achieve the same O(log log n) expected
amortized time, but they need µ to be from the class of

(
s/(log log s)1+ε, s1−δ

)
-

smooth distributions for some δ > 0. That is a subset of the (s, s1−δ)-smooth
class. The proposed SVEBT structure can handle (sα, s1−δ)-smooth distributions
for an arbitrary α (even α > 1) and it still needs only Θ(n) words of space and
expected O(log log n) time per operation.
On the other hand, the proposed structure is in no way ideal. Here we didn't

try to construct a de-amortized version of the structure, although it seems that
it could be achieved by �rst de-amortizing the dictionaries by the global rebuild-
ing technique and then (like in ASF) using the technique on the whole SVEBT
structure.
It would also be better if the structure was able to adapt to the distribution

of the input. We made SVEBT robust, so it doesn't have to know the α and
δ parameters, but it also doesn't achieve better performance for easy distribu-
tions. The ASF structure needed to know the parameters of distribution's class
in advance (or during rebuild), which allowed expected constant performance on
bounded distributions (including the uniform distribution).2 The structure of Ka-
poris et al. didn't need to know them, but the are some unresolved problems in
using the q*-heaps, so we don't feel sure that the stated complexities really hold.

2We could similarly use prior knowledge of the α and δ parameters to choose to build a structure
that is most suitable for them (for example ASF or SVEBT). As noted by Andersson, such
choice can also be done on the start of every rebuild, based on the knowledge of previous
input data.
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6 Conclusion

We devoted this thesis entirely to the predecessor problem. In the textbook com-
parison model it has simple asymptotically optimal solutions, but the more realis-
tic word-RAM model makes the problem much more interesting. The worst-case
behaviour on word-RAM is also understood quite well, thanks to the combined
e�ort of Beame, Fich and Andersson. By a combination of lower bound proofs
and a complicated data structure they managed to bound the di�culty of the
problem. Now we know that the most interesting part of the bound (the part that
only depends on n) is asymptotically tight and it is equal to Θ

(√
log n/ log log n

)
.

Since the �eld of expected-time bounds seemed to be less explored, we chose it
as the primary focus for our research. We studied past approaches to solve the
problem. They began with searching uniformly distributed data in sorted arrays
and over time they allowed to generalize the distribution and to add modifying
operations. Using the ideas, we proposed a new structure tailored specially for
the same model of �smooth� input. The new structure performs the predecessor-
problem operations in the same expected amortized O(log log n) time, but the
bound is proven from a weaker condition on smoothness of the input distribution
than the published structures (we don't need that α < 1). For a substructure we
chose a randomized modi�cation of a structure by van Emde Boas. To make the
properties clear, we described in detail how to modify the structure's design to
decrease the needed space and we analyzed the complexities.
As we discussed at the end of the previous chapter, the SVEBT structure still

has many directions in which it could be improved. Another problem is that the
models used for expected-time analyses are very unrealistic. We adopted them
from the published research because there seemed to be no better alternative.
Perhaps it would be better to use a di�erent approach, for example some models
from the theory of approximation algorithms could be used. Then we might be
able to prove, that some solution on the word-RAM is at most x-times worse than
any other solution.
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